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1. INTRODUCTION

Titanium carbide and composites containing it as
strengthening particles find wide application in indus-
try [1-6]. This is due to the fact that titanium carbide
TiC, along with HfC, ZrC, and WC has a high melting
point and high wear resistance as well as thermal stabil-
ity. Since the preferential properties of carbides are real-
ized only in multiphase composites, the problems of
carbide formation directly (in situ) in complex heteroge-
neous systems remain relevant.

Methods of titanium carbide synthesis have been
known for a long time [3], are very diverse and are regu-
larly developing [6-14]. In the generalized case several
types of titanium carbide synthesis can be distinguished.
One of them is based on chemical reactions of reduction
in gas medium or dissolution-deposition in melts [3,9,
12-20].

In particular, a well known method of producing tita-
nium carbide powders by reduction of TiO

2
 under

thermochemical reaction conditions [15], where the to-
tal reaction can be presented as

2
TiO + 3C TiC+ 2 CO.  (1)

In practice, carbidization of titanium oxide is carried
out at high temperature ~ 2000 °C, which can be referred
to a significant disadvantage of this method.

The mechanism of formation of single crystals of
titanium carbide by dissolution of Ti and C in liquid
calcium and subsequent crystallization of TiC particles
from the melt is a modification of the solution method of
producing single crystals of carbides of transition met-
als, conducted in melts of magnesium, aluminum, iron,
cobalt and nickel [20]. The group of thermochemical
methods also includes obtaining titanium carbide by
sol-gel method [16-19], but such processes are compli-
cated and multistage [19]. Among the variety of used
chemical compounds of titanium, titanium tetrachloride
and its hydride are widely used as precursors for car-
bide production besides titanium oxides. For example, a
two-step method of titanium carbide production
from aluminum subchloride, titanium tetrachloride and
carbon is known [21], magnesothermic reactions of
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titanium carbide synthesis involving titanium dioxide
are also used [22-24].

Another group of methods for producing titanium
carbide is based on classical metallurgical processes of
powder technologies. This group includes traditional
technologies of sintering of pure titanium and carbon
components, high-temperature synthesis under condi-
tions of combustion and thermal explosion, using hy-
brid (combined) technologies of thermal force and
electrophysical effects (hot isostatic pressing, radiant
heating, electrospark sintering, high frequency current
heating, etc.) [25-42]. In most cases of using methods of
this group, the standard reaction is realized:

Ti + C TiC.  (2)

But using pure titanium as a feedstock is not always
economically feasible.

A special direction was the development of tech-
nologies for obtaining titanium carbide using DC arc
discharge plasma [42]. But a common disadvantage of
plasma chemical methods is the complexity of the hard-
ware design and high expenditure of electrical energy
required to maintain chemical transformations in the
plasma, as well as the use of hydrogen [43-47].

The continuing interest to titanium carbides is also
due to a number of its structural features that have been
discovered and investigated recently. In particular, ma-
terials based on non-stoichiometric titanium carbide (spe-
cies Ti

3
C

2
T

x
), which have an extremely high melting point

(up to 3260 °C), high hardness, high electrical conduc-
tivity, and excellent chemical and thermal stability, are of
considerable interest [48-53]. They are two-dimensional
inorganic compounds consisting of layers of several
carbide molecules. Each layer is coated with negatively
charged atoms such as oxygen, nitrogen or fluorine.
Solid-phase processes are used to produce titanium
carbide in this form, in which the reaction occurs be-
tween metals (or metal oxides) and elemental carbon at
high temperatures of 1500 to 2300 K. The high tempera-
ture of the solid-phase reaction accelerates the diffu-
sion of carbon into the metal oxide or metal, which ac-
celerates the reaction, controlled by diffusion. Nanoscale
structures based on titanium carbide [4,51,52] have great
potential in the production of lightweight materials and
can be used for microwave absorption, electromagnetic
shielding, and energy conversion and in the field of
chemical catalysis. Composites containing titanium car-
bide and two-dimensional structures based on it are of
interest from the point of view of applicability in me-
chanical engineering and aerospace industry, as well as
in 3D-technologies [48,51-52].

The purpose of the brief review is to analyze the
available ideas about the kinetics of formation of com-

posites based on titanium carbide in self-supported
modes and the applicability of the available theoretical
approaches to predicting the appearance of
nonequilibrium phases and the choice of synthesis
modes of composites.

2. EXPERIMENTAL STUDY

Since the Ti-C system has been studied for quite a long
time, a wealth of experimental material has been accu-
mulated that describes not only the physical and chemi-
cal criteria for obtaining carbides in a wide range of their
homogeneity, but also the structural-phase state fea-
tures of a large set of non-stoichiometric carbides. If we
consider the classical methods of powder metallurgy
[29,35-39,54] of obtaining a Ti-TiC metal matrix compos-
ite, the procedure is reduced to milling, mixing and sub-
sequent heat treatment, possibly in combination with
extrusion at 900 °C. The authors [54] distinguish differ-
ent stages, whose kinetics include dissolution of the
smallest particles, saturation of the matrix with carbon,
change in stoichiometry of TiC carbide from the initial
composition of TiC

0.96
 to the equilibrium composition

(TiC
0.57

). The change in carbide composition causes an
increase in both the total mass fraction of particles and
their diameter. This, in turn, promotes contact between
individual particles in the most reinforced areas and
leads to an increase in the growth rate of the particles.
The authors describe the change in particle composi-
tion by the reaction

(1 ) Ti TiC TiCy y y    (3)

and do not identify phases of the types Ti
2
C, TiC

2
, Ti

3
C

2

as independent structures in the carbide composition.
Another possible way to obtain composites based

on titanium with inclusions of strengthening particles
can be based on the methods of self-propagating high-
temperature synthesis (SHS) [55-57] or combustion syn-
thesis. Examples of combustion synthesis of compos-
ites of the TiC/Ti type, as well as with TiC inclusions in
a matrix of complex composition can be found in [30,58].
However, due to the nonequilibrium nature of the syn-
thesis process itself and the presence of a wide area of
homogeneity in the Ti-C system state diagrams [19,59],
it is impossible to predict the composition of the syn-
thesis product based only on thermodynamic calcula-
tions, as evidenced by the data [30,60]. Therefore, the
preparation of Ti

x
C

y
-Ti composites by combustion syn-

thesis requires a relatively high excess of Ti, based on
the use of elemental powders. However, since the ex-
cess titanium acts as a heat sink (plays the role of an
inert filler) during the reaction, the mixture may not be
capable to self-propagating combustion under these
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conditions [30]. To overcome the limitations of thermo-
dynamics and/or kinetics, several activation methods
based on thermal [61], electrical [62], mechanical [63,64],
and chemical [65,66] stimuli have been proposed in the
literature. In particular, the use of chemical promoters to
enhance the reactivity of different systems has been
investigated in the SHS literature. For the case of car-
bide synthesis, it is shown that the most effective choice
of active self-propagating reactions in low-exothermal
systems, as well as for systems whose activation is com-
plicated by the presence of passive films on the rea-
gents, is the use of individual additives/promoters, for
example, halogenide-bearing organic polymers, alkali
metal halides and nitrates [66]. In [66], self-propagating
high-temperature synthesis (SHS) of titanium carbide
(TiC-Ti) composites from elemental powders in the pres-
ence of gas accelerants (i.e., Teflon) is studied. In par-
ticular, the dual role played by the polymer, i.e. as a
reaction promoter and as a carburizing agent, was in-
vestigated. The polymer is directly involved in the car-
burizing process of titanium and leads to an increase in
combustion temperature and rate. The authors showed
that if the carbon to titanium ratio (C/Ti) is properly
changed, Ti

x
C

y
-Ti composites containing Ti-metal in the

range of 0-25 wt.% can be prepared. As a rule, the kinet-
ics and mechanism of phase formation are not discussed
in detail in such studies.

In general, as a model system for self-propagating
high-temperature synthesis (SHS), the Ti/C system has
been and remains the subject of numerous studies [67-
80]. Practically the first work where the titanium-carbon
system is considered as gas-free was [70]. Scientific
publications contain data both on the solid-phase mecha-
nism of synthesis in this SHS system and on the mecha-
nism in which capillary spreading plays a significant
role [71,81-84]. Thus, it was shown in [81] that the com-
bustion of mixtures of titanium and soot involves capil-
lary spreading of the metal in the pores that are formed
between refractory particles. Formed titanium carbide
inhibits further reaction. The products have areas with
a deficiency of one component and an excess of the
other, because the finite rate of spreading only partially
improves the mixing of the components. The smaller the
particle size, the smaller the effect of capillary spreading
[82]. The authors [71] suggest that the interaction of
titanium with carbon in the combustion wave may be
accompanied by the formation of a carbide phase of
variable composition and carbon solution in liquid tita-
nium. Comparing the results for mixtures of stoichio-
metric and nonstoichiometric compositions (calculated
to form TiC

1
 and TiC

0.5
), the authors concluded that in

the first case the leading stage is the carbidization of
titanium, while in the second one the dissolution stage

of carbon in titanium with lower activation energy.The
study of the explosion of mixtures of Ti and Zr with
graphite under controlled conditions of electric current
heating [85] also leads to the conclusion about the lead-
ing role of liquid-phase processes, namely the process
of spreading of liquid metal through the pores of the
soot coating. In the monograph [56], a detailed analysis
of transport and spreading mechanisms within the reac-
tion cell also states that the process of melt spreading in
the combustion wave is accompanied by a heterogene-
ous chemical reaction of solid product formation, and
these processes are intrinsically connected with each
other.

As noted by the authors [86], when initiated by a
laser with a wavelength of 1.06 m, a liquid melt bath is
formed first in such systems, and only then the reac-
tions start. The transition from the solid-phase mecha-
nism (whose rate is limited by diffusion through the
solid product layer) to the liquid-phase mechanism (dif-
fusion during dissolution of carbon in liquid titanium is
determinative) is possible both with changes in the ra-
tio of initial components, particle sizes, and during com-
bustion. In [87], the difficulties in identifying the stages
of product formation in the SHS wave, related to the
fundamental features of reactions involving solids, are
discussed. Based on the analysis of synchrotron radia-
tion data, the authors believe that the leading stage is
the formation of primary products in the refractory rea-
gent layer, and that spreading cannot be directly ob-
served. In [88], high-speed filming revealed the intensi-
fication of the process due to the release of residual
gases in the synthesis wave and established that the
reaction region consists of hot spots localized near the
fusible reagent particles. The formation of spots is as-
sociated by the authors with the phenomenon of capil-
lary spreading in the heating zone.

The concentration distribution in the combustion
wave of the Ti-C system was studied in [89]. The begin-
ning of a wide reaction zone on the basis of microscopic
studies is selected the place where melting and spread-
ing of titanium particles is observed. Increasing the size
of the particles leads to more incomplete transformation
and expansion of the reaction zone. In general, under
nonequilibrium conditions, which take place in the SHS
wave, synthesis can be accompanied by the formation
of Ti

2
C, Ti

3
C

2
, etc. phases that are absent in the equilib-

rium state diagram [59,90,91]. However, detailed studies
[92,93] suggest that there is a possibility of stabilization
of nonequilibrium phases. In [94,95] it is emphasized
that in the phase diagram in the range of TiC carbide
there are still phases Ti

6
C

5
, Ti

3
C

2
, and Ti

2
C, which can

be synthesized experimentally. And first-principles cal-
culations indicate that the Ti

2
C, Ti

3
C

2
, Ti

4
C

3
, Ti

5
C

4
, and
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Ti
6
C

5
 phases are stable at high pressures. The presence

of these phases in the synthesis products, along with
TiC, is often identified as non-stoichiometric titanium
carbide TC

x
 [96,97] with a noticeable deviation from the

equiatomic compound (Table 1).
Interest in the Ti-C system in recent years is associ-

ated with the possibility of obtaining ordered structures
like Ti

2
C in mixtures Ti-0.5C, with the possibility of ac-

celerating reactions in granular mixtures and obtaining
titanium carbonitride during combustion in a downflow
of gas [98,99]. In contrast to powder systems, in which
convective transport associated with the melt flow of a
fusible component under the action of capillary forces
and gas pressure plays a major role [100,101], no melt
layer is formed during combustion of pellet mixtures. In
general, assumptions about the possibility of the syn-
thesis of nonequilibrium phases in the combustion wave
have been suggested in the literature for a long time [56,
102] and references in [56] to earlier publications, but
convincing experimental evidence has not yet been ob-
tained. The situation has not been significantly clarified
in [103] either.

3. THEORETICAL CONCEPTS

In spite of the fact that there are quite a lot of methods
of titanium carbide synthesis and modifications of the
methods appear every year, only in the field of combus-
tion and explosion along with active experimental stud-
ies of the mechanism of product formation in this sys-
tem, a big role is given to mathematical modeling. How-
ever, even here there is still no unified point of view on
the need to take into account in the models those or
other physical phenomena.

Classical thermal models [104-106], which have wan-
dered from one review or monograph to another, are
based on the assumption of a narrow chemical reaction
zone and a thermal reaction mechanism. The simplest
stationary model involves the heat conduction equa-
tion written in the coordinate system associated with
the combustion front moving with velocity U

b
 (which

must be found in the course of solving the problem).

Calculated phase Determined phase Lattice parameter Stoichiometric
composition composition, vol.% a, nm coefficient X, [99]

TiC
X

Ti

TiC+30 vol.%Ti 100 - 0.4320 0.69
TiC+40 vol.%Ti 95.5 4.5 0.4310 0.58
TiC+50 vol.%Ti 93.5 6.5 0.4302 0.50
TiC+60 vol.%Ti 75.,4 24.6 0.4299 < 0.50

Table 1. Phase composition in SHS products for different initial compositions, lattice parameter a for titanium carbide
TiC

X
and the value of the stoichiometric coefficient X caclulated from the lattice parameter..

d d d
0.

d d d
b p

T T
U c

x x x
      

 
 

 (4)

The conditions correspond to the fact that the rea-
gents are on the left and the reaction products are on
the right:

0
; ,

b
x : T T x : T T       (5)

where

0b ad

p

Q
T T T

c
  

  (6)

adiabatic combustion temperature. It is assumed that
the rate of the chemical reaction depends on the tem-
perature according to the Arrhenius law

0
( ) exp .a

E
QW T Qk

RT
    

 
 

When taking into account the level of completeness of
the reaction, the kinetics equation, also written in the
coordinate system associated with the front,

0

d
( ) ( ),

d
b

U k W T
x


    (7)

and additional conditions

0; 1.x : x :         (8)

are added to (4).
The function  also changes:

0
( ) ( ) ( ) exp .a

E
Q W T Qk

RT
        

 
 

Analytical estimates of the front velocity based on the
stationary model have been made by various authors
[106-109]. For

( ) (1 ) ,n    

the approximate estimate has the form
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where

   1

0

dt zz e t t


   

is the Gamma function.
In [110], the gasless combustion mechanism was

studied using the Al+Fe
2
O

3
 thermite system as an exam-

ple. The stoichiometric mixture was diluted with the fi-
nal product. In this case, the calculated combustion tem-
perature (2450 K) was lower than the boiling point of the
most volatile component, and the gas phase was not
formed. Analysis of the temperature dependence of the
combustion rate showed that the leading reaction pro-
ceeds at temperatures close to the maximum. In this case,
diffusion is not the limiting stage, and the combustion
process is described by the simplest thermal theory. The
Ti-C system also satisfies the combustion conditions
for the gas-free compositions, as suggested by [70].
However, in contrast to the thermite mixture, where the
reaction is predominantly in the liquid phase, only tita-
nium melts in the mixture of titanium powders with car-
bon. In direct contact with carbon, titanium carbide is
formed, which can become a barrier to the further course
of the reaction. This leads to the need to consider the
stages of the physical-chemical process associated with
diffusion through the reaction product layer.

In [111], the expansion of the reaction zone under
stratified combustion conditions is associated with the
braking of the reaction by the refractory product layer,
using the logarithmic law as an example. For systems
with solid-phase products, the authors conventionally
distinguish three zones in the combustion front: a heat-
ing zone, a spreading zone, where the reaction rate is
high, and an afterburning zone. In general, finding the
type of function is associated with great difficulties; the
kinetic regularities for two limiting cases are most clear.
(1) The melting temperature of the reactants is much
lower than the combustion temperature, and the solu-
bility in the liquid phase is unlimited. The rate of heat
release for such processes is determined by the usual
laws of kinetics of homogeneous liquid-phase reactions.
(2) The reaction product and reactants (or at least one
of the reactants) do not melt. Chemical interaction is
carried out by diffusion of the reactants through the

layer of formed product, which separates the reactants
and inhibits further course of the reaction. There is no
complete mixing of the reactants, and the reaction is
essentially heterogeneous. The type of the kinetic func-
tion in such systems is determined by the mechanism of
reagent transfer and the structure of the growing layer
of products [112]:

( ) ,m pe       (10)

where m and p are retardation parameters.
The influence of the type of the kinetic function on

the characteristics of reaction initiation in gas-free com-
positions was studied in [113]. The author [114] reduces
the role of changes in the interaction surface of the melt
with a solid particle during the accumulation of a solid
product to a change in the type of the kinetic function
and further analyzes again the former problem (4), (5),
(7), (8). Thermal explosion in a system with a parabolic
interaction law [115,116] also has peculiarities in com-
parison with classical representations. However, such
models have not been applied to the real conditions of
bulk synthesis of titanium carbide.

Models of the form [117-119] can also be used to
describe the synthesis of Ti-C mixtures with excess tita-
nium if the excess titanium is considered as an inert
diluent and the transformations of the form (3) leading
to the formation of non-stoichiometric carbide are not
taken into account.

Directly taking into account the slowest physical
stage-the diffusion of a reactant through a refractory
product layer-is associated with the appearance of com-
bustion models with the isolation of the so-called reac-
tion cell [72,120-123]. In formulating the problems, it is
emphasized that, due to the low rates of mutual trans-
port of reactants and products, the mixing stage is de-
fining, which must be taken into account in the model in
some form. In [120], a repeating element in a layered
system with layers perpendicular to the surface is dis-
tinguished as a cell. It is assumed that a phase of vari-
able composition is formed at the contact of the layers.
Heat release in the reaction occurs when a new phase is
formed. The authors find a parabolic law of new phase
layer growth for a particular quasi-stationary regime. In
[121], it is assumed that a heterogeneous material can
be imagined as solid particles of one component uni-
formly distributed among the particles of the other com-
ponent. In the heating zone, the particles of one kind
melt first; the melt spreads evenly around the refractory
particles. The product of the reaction is liquid. To deter-
mine the concentrations of reactants and product, a dif-
fusion problem is solved in cells in a spherical coordi-
nate system. Up to melting temperature both diffusion
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and reaction are neglected. The total heat release in re-
actions is written in the form

0

1 2
2

0 1 2
4 exp d ,

R

n na

i i i

o

E
NQ M k Y Y r r

RT
     

 
    (11)

where N is the number of cells per unit volume of the
mixture,

1

3

0

4
,

3
N R



  
  

Q
i
M

i


1
-  are the heat release, molar mass and stoichio-

metric coefficient for each component Y
1
, Y

2
; it is as-

sumed that Q
1
M

1


1
 = Q

2
M

2


2
; n

1
,n

2
 - are the orders of

the reactions for each component. Based on the analy-
sis of the model, the authors distinguish between ki-
netic and diffusion combustion modes.

In [123], the problem for the reaction cell is solved at
each point of the macroscopic sample. In each element
of the heterogeneous structure of the spherical shape
of the SHS composition, the processes of diffusion and
reaction of reagents occur at the temperature corre-
sponding to the points of the macroscopic sample. There
is no spatial distribution of temperature along the ra-
dius in the reaction cell. In each cell a diffusion problem
is solved for two reactants Y

1
 and Y

2
, which are spent to

form one reaction product. The reactants are separated
at the initial time and then a diffusion interface appears.
The mutual diffusion coefficient and reaction rate in the
cell depend on temperature according to Arrhenius law.
The average over the volume of the cell the rate of chemi-
cal reaction is defined as:

  
 

0

2

1 2 0

0

1
, exp d .

,

R

a

o

E
W T x t YY k r r

R RT x t
 

 
 
 



Heat release QW(x,t) depending on time and coordi-
nate x and time t is used in the heat conduction equa-
tion, which is essentially little different from (11). The
authors solve the nonstationary problem by setting the
temperature at the boundary equal to the adiabatic com-
bustion temperature; both stationary and oscillatory
combustion modes are obtained. The models have not
been applied to the analysis of specific systems.

In [69,82], when describing combustion in the Ta-C
and Ti-C systems, a large metal particle of a given radius
R

0
 is located in the center of the reaction cell, which is

surrounded by particles of a second smaller component
with an effective radius r

eff
. To take into account the

phenomenon of capillary spreading in [82] the degree of
filling S of the pores with the melt after reaching the
melting temperature T

m
 by the fusible component is

analyzed. It is assumed that the pore size decreases due

to the growth of the solid product layer, and the reac-
tion cell size is determined by the number of fusible
particles in the volume unit (12), where R

0
 serves in-

stead of R
eff

. Then

0

,
eff

l
S

R R




where l is the path travelled by the metal through the
capillaries of the cell. Assuming that there is a reaction
diffusion mechanism with coefficient D(T), leading to a
parabolic law of product layer growth, for the level of
filling S the authors obtain the equation

 
 

2

2

0

1
,

4

k

eff

b

eff

r ZdS
U

dx R R S

 


 

where  –  is  the viscosity;  –  is  the surface  tension
coefficient, Z = /r

eff
 – is the relative thickness of the

growing layer of the product,

 
4 1

.
b n

eff

SD TdZ
U

dx Z r 


The boundary conditions are formulated by the authors
at the melting point temperature x=0 and in the product
region, where the final level of pore filling and Z=1 are
given. The heat release function is given as

 3 3

0

, 1;
4

3
, 1,

eff b

dS

dx
Nm R R U Q

dZ

dx

 

   

 







where m is the porocity;

   

3

2

' 0
2

eff

eff

r

R R D T


 

 

is the ratio of the spreading time to the reaction time.
As a result, it is possible to distinguish a kinetic

regime, in which the combustion rate depends
exponentially on the combustion temperatures and does
not depend on the particle size, and a capillary regime
with complete and incomplete transformation of reagents
into reaction products.

The effect of reactions at the reagent interfaces was
studied in [124] using a model heterogeneous system
[120], consisting of ordered layers of initial reagents, at
the boundary between which a single chemical com-
pound is formed. The reaction cell included a repeating
element. The reaction rates at the mobile interfaces were
determined by Arrhenius law. The reactions led to an
additional inhibition of the reaction front, which is as-
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sumed to be an additional cause of incomplete transfor-
mation in SHS processes.

The diffusion problem for the reaction cell in [72] is
formulated on the basis of the state diagram of the Ti-C
system; the cell size is determined by the size of carbon
particles and its content in the initial mixture; the forma-
tion of titanium carbide and carbon solution in titanium
is taken into account. The authors believe that a spheri-
cal cell can be replaced by a flat one; two processes -
dissolution of carbon in titanium and growth of carbide
phase - occur simultaneously in the cell.  The interac-
tion starts after titanium melting. The problem for the
reaction cell includes diffusion equations of the form:

 
2

2
,

b k

C C
U D T

x r

 


 

k = 1 in the layer of titanium carbide, r
1
(x)  r  r

2
(x);

k = 2 in the solution of carbon in titanium, r
2
(x)  r  R

0
.

In the automodel problem, the variable x plays the role
of both time and coordinate. The initial state of the cell
corresponds to the initial size of carbon particles, which
are surrounded by titanium melt. The boundary condi-
tions have the form:

     

   
 

     
2 2

1

1 1 1 1

2 2 2

2

2

2 1 2

0 0

0

; 1

0 0 ;

0 ;

;

0.

b

p

p b

r r

dr C
r r x : C C C U D T

dx r

r r x : r r x : C C

r r x : C C

dr C C
C C U D T D T

dx r r

C
r R :

r

 


   



    

  

 
   

 


 



The heat release rate in (4) is determined by the fluxes of
carbon deep into the carbide and into the liquid solu-
tion and has the form

   
0

2

1

1 2 1

d d
d ,

d d

R

b b

r

r
Q U Q Q U C r r

x x
        (13)

where Q
1 
and Q

2
 – are the heat effects of carbide phases

formation and carbon dissolution in liquids.The phase
diagram lines corresponding to the existence of the car-
bide phase and solution are approximated by suitable
dependences. Based on the model, the authors carried
out a detailed study of the carbide formation modes and
the structure of the combustion wave. The reaction zone,
as a rule, turns out to be wide. It was found that stoi-
chiometric carbide is formed during the interaction with
excess carbon, and the excess carbon acts as an inert
additive. The maximum combustion rate corresponds to

the stoichiometric composition, the lack of carbon leads
to both a decrease in temperature and a decrease in the
combustion rate. The results obtained are in agreement
with the experiment. Similarly to [72], a combustion model
for the Ti-C system was constructed based on the state
diagram and data on the thermodynamic properties of
individual substances, phases, and solutions in [125,126].
However, detailed consideration of the enthalpy bal-
ance as a function of temperature has not led to qualita-
tively new effects and does not add information on the
reaction zone structure.

This approach has been used to model the combus-
tion and explosion processes of other systems, includ-
ing those with the formation of several phases [127-
137]. A more complex microstructural model of the reac-
tion cell is discussed in [138]. Structural variants of pos-
sible reaction cells for different systems are reflected in
[56]. However, the vast majority of the variants are ac-
companied only by a general discussion.

Different variants of titanium carbide formation in
the combustion wave based on diffusion-kinetic mod-
els are discussed in [139-142]. In [141], for example, the
model of synthesis with isolation of a reaction cell of
spherical geometry is considered for two scenarios: (1)
growth of a solid carbide layer on the surface of solid (at
T<T

m
(Ti)) or liquid (at T>T

m
(Ti)) titanium, and (2)

growth of a solid titanium layer on a carbon particle if
titanium melts and diffuses in the SHS wave due to rapid
heating. The rate of product growth is controlled by
diffusion through the solid carbide layer. For both sce-
narios, the Stefan problem is formulated and solved.
The transition from one scenario to the other is actually
done manually based on the solution of the macrolevel
problem.

Peculiarities of structural transformations in a com-
bustion wave [78,88,89] are also reflected in works [143-
145] based on models of mechanics of heterogeneous
media and including continuity and energy equations
(in the form of thermal conductivity equations) for re-
fractory and fusible components. The chemical reaction
itself is described within the framework of the formal
kinetic law. Within the stochastic model [146], the prob-
ability of transformation is introduced and perturbations
are continuously generated, which makes it possible to
transition from one transformation mode to another. This
allows transient processes to be studied. A review of
one- and two-dimensional discrete combustion models
can be found in [147]. The authors of [148] also claim to
describe the structural transformations in the combus-
tion wave of the Ti-C system. However, the article does
not contain the results of structural modeling.

None of the mentioned works can predict the spe-
cific phase composition of the products.
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4. DETAILED SCHEMES OF
CHEMICAL REACTIONS

In [149], a system of principally possible reactions in
the Ti-C system is written down. The set of reactions is
not complete. Based on known approaches using ther-
modynamic data, the same work gives an estimate of the
formal-kinetic parameters. While the thermal effects of
the reactions are quite expected, the activation energies
and pre-exponents can be considered only as a first
approximation corresponding to ideal conditions when
the accompanying physical processes (wetting, diffu-
sion, melting, and crystallization) have no effect on the
kinetics, which, of course, cannot be realized. There-
fore, such data (presented in Table 2) require correction
based on comparison with experimental data. For exam-
ple, considering that the rate of reactions involving sol-
ids can be controlled by diffusion, we must accept for
solid-phase stages E’

a
=(E

a
+E

D
)/2, where E

D
 is the diffu-

sion activation energy, or use the approach of [112] and
introduce kinetic laws reflecting the reaction mechanism
at the microlevel.

The purpose of [150] was to analyze the changes in
the Ti-C system and to develop an algorithm for the
numerical implementation of the kinetic models used for
different variants of the kinetic schemes and different
compositions of the initial mixtures at a given tempera-
ture corresponding to the initiation conditions. For the
variants chosen in the paper, it was found that the most
stable compounds under equilibrium synthesis condi-
tions (at a given constant temperature) are two carbides,
TiC and TiC

2
, which can be identified as Ti

x
C

y
. The final

composition at long computation times for different given
temperatures is different. Restriction of the synthesis
time and synthesis under unsteady temperature condi-

No. Reaction z
i0
 [mole/(cm3s)] E

a
 [Joule/mole] at Reaction heat

melting temperature Q* [Joule/mole]

1 Ti
2
C  Ti + TiC 0.103x1016 130400 63900

2 Ti
3
C

2 
 TiC + Ti

2
C 0.359x1015 104235 163280

3 Ti + C  TiC 0.157x1014 66667 184100
4 2Ti + C  Ti

2
C 0.987x1011 172401 120600

5 TiC + Ti
2
C  Ti

3
C 0.120x1013 104235 -163280

6 Ti + TiC  Ti
2
C 0.421x1012 132845 -63900

7 Ti + C + Ti
2
C  Ti

3
C

2
0.281x1012 143766 20820

8 Ti + 2C TiC
2

0.732x1013 53859 236070
9 TiC

2
 + Ti  2TiC 0.204x1014 58624 132930

10 Ti
2
C  Ti + 2C 0.230x1016 151852 -236070

11 Ti
2
C  TiC + C 0.268x1014 51717 -51570

12 Ti
3
C

2 
 2TiC + Ti 1.775x1016 209990 227580

Table 2. Formally-kinetic parameters, data from [154].

tions can lead to a more complex composition. The con-
ditions for obtaining a nonequilibrium composition
(when the temperature changes) require a separate
study.

Three groups of reversible reactions can be distin-
guished in Table 2, which in the full model for
nonequilibrium synthesis conditions will play an impor-
tant role in the formation of the final product composi-
tion. These are

2 2

3 2 2 2 3 2

2 2

Ti C Ti + TiC and Ti + TiC Ti C;

Ti C TiC + Ti C and Ti + Ti C Ti C ;

Ti 2 C TiC and TiC Ti 2 C.

 

 

   

As an example, let us consider a model of fusion in
volume. We assume that the pressing is heated by ther-
mal irradiation, homogeneously on all sides of the sam-
ple; the sintered sample is small compared to the thick-
ness of the thermal boundary layer that can be formed
during heating. Consequently, the heat balance equa-
tion is enough to describe the temperature dynamics:

 4 4 ,
ch W

dT
Vc VW S T T

dt
    

where V –  is  the  specimen volume; S – is area of its
surface;  – is Stephan-Boltzmann constant;  – is the
blachness level; T

w
 – is the temperature of vacuum cham-

ber walls, changing with a which varies according to a
given law.

Summary chemical heat release W
ch

 can be presented
in the form

1

,
n

ch i i

i

W Q
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where Q
i
 - is the heat of th ith reaction, J/mol, 

i
 - is the

rate of ith reactioni; n –is the number of reactions.
The rates of chemical reactions depend on tempera-

ture according to the Arrhenius law, and on the concen-
trations of components according to the law of acting
masses. To take into account the possible retardation of
reactions by a layer of refractory products, we intro-
duce retardation parameters, which in general are differ-
ent for different reactions. Then, relations for reaction
rates will take the form:

   exp ,ki

i i k i i

reagents

z T y m Y  

where 
ki
 - is the stoichiometric coefficient of k-compo-

nent in i-reaction; Y
i
 and m

i
- are refrsactory product con-

centration and retardation parameter for reaction i;

  0
exp ,i

i i

E
z T z

RT
  

 
 

y
k 
= 

k
/s are mass concentrations of components, 

k
 =


k
M

k
, z

i0
 - the pre-exponential factors;

 
;

s i

i

  


k
 - are molar concentrations; M

k
 - are molar masses of

components. The components are renumbered in the
following order

(1) - Ti, (2) - C, (3) - TiC, (4) - Ti
2
C, (5) - TiC2, (6) - Ti

3
C

2
.

The balance equations for the components are as fol-
lows

d
,

d
k

k

y

t
  

where

1

,
r

k k ki i

i

M


   

r - is reaction number.
The plasticizer removal stage and melting are not

analyzed in the simplest model. The problem is solved
numerically. Varying the heating conditions, the initial
composition of the powder composition, the initial tem-
perature, we obtain different product compositions.
Since the method [149] gives estimates of pre-exponen-
tial factors for an ideal mixture (actually for mixing the
reactants at the molecular or atomic level), a corrective
multiplier, identical for all reactions, was introduced into
the macromodel to account for non-ideality.  This factor
makes it possible to adjust the time of the sintering proc-
ess in a numerical experiment with the data obtained in a
laboratory experiment. In this case the qualitative char-
acteristics of the process do not change. A change in
the numerical values of the z

i
 constants leads to a change

(a) (b)

(c) (d)

Fig .1. Temperature (a) and phase concentration evolution (b,c,d) during the sintering.
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in the proportions between the different phases both in
the sintering process and at the end of the observation.
However, in any case, the titanium present at the initial
moment of time and the titanium appearing in the inter-
mediate stages of the decomposition of nonequilibrium
phases pass into carbide phases.

In the calculation, which is illustrated in Fig. 1, it was
assumed that the reaction mixture has an initial tempera-
ture of 400 K. Initial composition of the specimen,
mol/cm3: 

10
= 0.001; 

20
=0.0001; 

30
=0.01; 

40
= 0.02;


50

= 0.001; 
60

 = 0.045.
The dynamics of the temperature T

w
 is shown in Fig.

1a. After the heating stage, the sintering stage begins at
a given temperature. The main changes in the composi-
tion (decomposition of Ti

2
C with release of titanium) are

observed even during the heating stage. During the iso-
thermal stage a slow accumulation of TiC

2
 and TiC car-

bides occurs. At a given set of parameters, the concen-
tration of Ti

3
C

2
 practically does not change; reactions 1,

3, 6, 8, 9 make the main contribution to the dynamics of
the process. The role of the inverse reaction (1) can be
clearly seen in Figs. 1b, 1c, and 1d. of the reactive
sintering product, which correspond to different values
of z

1
. The larger z

1
, the faster Ti

2
C disappears, the earlier

the concentration of free titanium increases and the larger
share of the reaction products is occupied by TiC

2
.

Additional studies are required to clarify the kinetic
parameters.

5. CONCLUSION

A selective review of the currently known scientific pub-
lications considering the kinetic regularities of synthe-
sis of titanium carbide and Ti

x
C

y
-Ti composites on the

basis of experimental data, theoretical approaches, and
proposed models allows us to draw the following con-
clusions:
(1) The approach to modeling the synthesis of com-
posites by combustion with separation of reaction cells
can be considered as a simplified understanding of
multilevel modeling. However, this approach should be
modified by applying a rigorous mathematical justifica-
tion for the transitions between the levels of descrip-
tion. Intervening in the process by replacing some cells
with others when given conditions are met is, generally
speaking, not justified in most cases because it pre-
determines the path of the process.
(2) The phase field method could find its application in
model building on micro level. But for real systems this
approach is not yet applicable due to the lack of the
necessary thermodynamic data.
(3) An approach based on the mechanics of heteroge-
neous media would be promising. However, the model
[151] has not been continued, and publications [152-

154] and others do not pay attention to the kinetics of
chemical reactions. So, research in this area is far from
being completed.

Thus, in spite of numerous publications covering
the problems of synthesis by combustion of compos-
ites of system Ti - C, a number of questions remain un-
answered, associated with an adequate interpretation
of the whole complex of physical and chemical phenom-
ena occurring during the realization of this process.
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